Tetrahedron Letters No.33, pp. 3679-3682, 1968. Pergamon Press. Printed in Great Britain.

THE RATIO OF C- AND O-ISOMERS IN THE ETHYLATION OF ALKALI ENGLATES OF ETHYL ACETOACETATE IN HEXAMETHYL-PHOSPHORAMIDE AND DIMETHYL SULFOXIDE

A.L. Kurz, I.P. Beletskaya, A. Macías, O.A. Reutov. Moscow State University Department of Chemistry

(Received in UK 26 March 1968; accepted for publication 22 May 1968)

A series of publications has appeared recently which point out the formation of significant quantities of O-isomer in the alkylation of the alkali enolates of β -ketoesters and β -diketones /1-4/.

However, in the above referred works /2, 3/, the reactions were carried out with the use of carbonates or tert-butylates of alkali metals as bases. As a result, in the reaction mixtures there was always a certain amount of water or alcohol.

It seemed worthwhile to us to carry out the ethylation reaction in the absence of hydroxylic compounds, since it is well known that the latter bring about the screening of the oxygen center due to selective solvation /5, 6/.

The reactions were carried out in a dry argon atmosphere. The products were identified by means of thin-layer chromatography (Al_2O_3 IV; hexane-ethyl acetate 13:1).

Quantitative analysis of the mixtures was carried out by GLPC using a flame-ionisation detector chromatograph. The length of the column was 2 m; the diameter 4 mm; the stationary phase was polysiloxane (1%) placed on NaCl (0.15 - 0.25 mm). The column temperature was 120°C with nitrogen carrier gas flow rate at 70 ml per min.

Samples of C-ethyl compound /7/ and ethyl \ll, \ll -diethylacetoacetate /8/ were obtained by standard methods; ethyl β -ethoxycrotonate obtained in experiment N° 1 (TABLE 2) was freed of impurities of C-isomer and ethyl \ll, \ll -diethylacetoacetate by means of preparative chromatography (Al₂O₃ IV; hexaneethyl acetate 13:1). The IR-spectrum shows two strong bands at 1632 cm⁻¹ and 1718 cm⁻¹.

The results obtained are presented in tables 1, 2 and 3.

In all cases, the yields in per cents were calculated for the ethyl acetoacetate entering in the reaction.

Practically, complete alkylation was achieved in the experiments with $(Et0)_2SO_2$ and Et1.

TABLE 1*

Ethylation of In-, Na- and Cs-ethyl acetoacetate in HMPA, C=1 mol/1, t=20°C

N°	Metal deriva- tives	Alkylation agent	Time (hrs.)	% O-isomer	% C-isomer	% ethyl ∝,∝-diethyl- acetoacetate
1	দে	(Et0)2802	214	62	31	7
2	Li	Et ₃ OBF4	20	37	61	2
3	Na	(EtO)2502	23	69	24	7
4	Na	Et ₃ OBF4	40	61	35	4
5	Na	EtČ1	138	60	28	12
5	Na	EtBr	22	38	52	10
7	Na	EtI	24	17	71	12
В	Cs	(Et0)2802	4	81	19	<1

TABLE 2**

Ethylation of K-ethyl acetoacetate by (EtO)2802, t=20°C

N°	Metal de- rivatives	Solvent	Concen- tration (mol/1)		% O -isome r	% C-isomer	% ethyl ≪,≪-diethyl- acetoacetate
1	ĸ	HMPA	1	23	83	15	2
2	K (in pre- sence of equi- molar amount of t-BuOH)	Ħ	1	23	60	36	4
3	K (in pre- sence of equi- molar amount of H ₂ O)	"	l	120	71	24	5
4	ĸ	10	0.1	120	86	14	<1
5	K + Bu MNC104 (1:1)	n	0.1	50	91	9	<1
6	K	DMSO	1	74	69	24	7
7	ĸ	n	0.2	120	74	18	8

• Li-, Na-enclates were obtained in the reaction of LiH and NaH with ethyl acetoacetate, respectively. Cs-derivative was obtained in the reaction of Cs_2CO_3 with ethyl acetoacetate at 95°C.

^{**} For tables 2 and 3: K-ethyl acetoacetate was obtained from ethyl acetoacetate and tert-BuOK in ether with subsequent extraction and drying at 70°C / 1 mm Hg during 24 hours.

78	A TO	TD	z
- т.	AC		2

N°	Metal deriva- tives	Alkyla- tion agent	Solvent	Concen- tration (mol/l)	Time (hrs)	% O- isomer	% C- isomer	% ethyl \propto, \sim -diethyl- acetoacetate
ı	K	Et ₃ OBF4	HMPA	1	98	71	18	11
2	K (t+70°C)	у т Н	11	l	1	77	21	2
3	ĸ	17	HMPA- CH ₂ Cl ₂ (1:1)	2	53	82	18	<1
4	K (t-10°C)	11	**	2	19	65	31	4
5	ĸ	**	HMPA- CH ₂ Cl ₂ (2:1)	1	16	69	27	4
6	K+Et ₄ NClO ₄ (1:1)	11	HMPA- CH ₂ Cl ₂ (4:1)	0.5	16	75	23	2
7	К	EtCl	HMPA	1	115	60	32	8
8	K	EtBr	11	1	54	39	38	23
9	K	EtI	Ħ	1	120	13	71	16
10	K	Et30BF4	DMSO	1	72	67	28	5
11	ĸ	", "	Ħ	0.2	120	65	30	5

The yields of O-isomer increase with electronegativity of X in the series $RI \langle RBr \langle RCl \langle (RO)_2 SO_2 \rangle$. The apparent exception is that of $Et_3 OBF_4$. On the basis of data concerning the ratio of isomers, in the experiments in binary mixtures of HMPA-CH₂Cl₂, it is obvious that the alkylating agent is a complex of $Et_3 OBF_4$ with HMPA, whose electrophility is less than that of $(EtO)_2 SO_2$.

The yields of the O-isomer increase in the series $\text{Li} \leq \text{Na} \leq \text{K} \leq \text{S} = \text{Na}_4$ in correspondence with the increase of the ionic character of the bond.

The greatest yield of the product of 0-ethylation (91%) was obtained for the reaction of K-ethyl acetoacetate with $(EtO)_2SO_2$ in HMPA, in which an equimolar amount of Bu_4NClO_4 is present.

From data in Table 2 it is seen that even equimolecular additions of protonic solvents diminish appreciably the yield of $ethyl \beta$ -ethoxycrotonate.

REFERENCES

S.T. Ioffe, K.V. Vatsuro, E.E. Kugucheva and M.I. Kabachnik, <u>Zh. Org. Chem.</u>
<u>2</u>, 381 (1966).

- 2. G. Brieger and W.M. Pelletier, Tetrahedron Letters, 40, 3555 (1965).
- 3. P. Chong and P.S. Clezy, Tetrahedron Letters, 7, 741 (1966).
- 4. G.J. Heiszwolf and H. Kloosterziel, Chem. Commun., 51 (1966).
- 5. N. Kornblum, P.J. Berriger and W.J. Noble, <u>J. Am. Chem. Soc.</u>, <u>85</u>, 1141 (1963).
- 6. N. Kornblum, P. Seltzer and P. Haberfield, <u>J. Am. Chem. Soc.</u>, <u>85</u>, 1148 (1963).
- 7. M. Conrad and L. Limpach, Ann., 192, 153 (1878).
- 8. F.J. Marshal and N. Cannon, J. Org. Chem., 21, 245 (1956).